Material Properties		Norm	Unit	
acc. to DIN EN ISO 10350		Norm ISO (IEC)	Einheit	Polytron ECTFE 1000
Used Test Method ^{x)}				ΙΕ
Material ¹⁾	-	-	-	ECTFE
Fillers/Modification ¹⁾	-	-	-	-
Color ²⁾	-	-	-	white
Density Water Absorption (saturation in water) ³⁾	ρ Ww	1183 62	g/cm³ %	1,68 < 0,10
Moisture Absorption (saturation in water) Moisture Absorption (saturation at 23°C/50% RH) ³⁾	WH	62	%	0,04
MECHANICAL PROPERTIES*)	• • • • • • • • • • • • • • • • • • • •	02		5,5 1
Tensile Test ⁴⁾				
Modulus of Elasticity	E_t	527-1/2	MPa	1600
Tensile Stress at Yield	σ_{Y}	527-1/2	MPa	30
Tensile Stress at Break	σ_{B}	527-1/2	MPa	
Tensile Stength Yield Strain	σ _{Y max}	527-1/2	MPa %	48
Strain at Break	ε _Υ ε _Β	527-1/2 527-1/2	%	> 50
Flexural Modulus ⁶⁾	E _f	178	MPa	> 30
Flexural Strength ⁶⁾	σ _{Y max}	178	MPa	
Compressive Strength ⁷⁾				
Compressive Stress @ 1% Strain	σ_{d1}	604	MPa	14,5
Compressive Stress @ 2% Strain	σ_{d2}	604	MPa	26
Compressive Stress @ 10% Strain	σ_{d10}	604	MPa	-
Impact Strength ⁸⁾	- 11	470	KJ/m²	ND
Charpy-Impact-Strength Charpy-Notched-Impact-Strength	acU	179 179	KJ/m² KJ/m²	NB
Izod-Impact-Strength	acN aiU	180	KJ/m²	-
Izod-Notched-Impact-Strength	aiN	180	KJ/m²	- NB
Hardness		4.60		5
Ball Indentation ⁹⁾	Н	2039-1	MPa	65
Rockwell ⁹⁾	R	2039-2	-	R 94
Shore ¹⁰⁾		868	-	55 D
Tribology Properties ¹¹⁾				
Coefficient of Friction, dynamic	μ_{dyn}	7148-2	-	0,35 - 0,45
Wear Rate	-	7148-2	μm/km	1100
THERMAL PROPERETIES				
Molting Doint ¹²⁾	Tm	11357 ₋ 1 µ 3	°C	240
Melting Point ¹²⁾ Glastransition Temperature ¹²⁾	Tm Ta	11357-1 u. 3	°C °C	240 85
Glastransition Temperature ¹²⁾	Tm Tg c	11357-1 u. 3 11357-1 u. 2 -	°C	240 85 -
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C	Tg			85
Glastransition Temperature ¹²⁾	Tg c	11357-1 u. 2 -	°C J/(g x K)	85 -
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K)	85 - 65 - 0,15
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str	Tg c Tf 1,8 Tv	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C	85 - 65 -
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K) °C	85 - 65 - 0,15 160
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min.	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K) °C °C	85 - 65 - 0,15 160 -200
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C	85 - 65 - 0,15 160 -200 180
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K) °C °C	85 - 65 - 0,15 160 -200
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time	Tg c Tf 1,8 Tv λ	11357-1 u. 2 - 75-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C	85 - 65 - 0,15 160 -200 180
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C	Tg c Tf 1,8 Tv λ RTI - -	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C K ⁻¹ x 10 ⁻⁶ K ⁻¹ x 10 ⁻⁶	85 - 65 - 0,15 160 -200 180 -/160 120 140
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C	Tg c Tf 1,8 Tv λ RTI - -	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C	85 - 65 - 0,15 160 -200 180 -/160
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾	Tg c Tf 1,8 Tv λ RTI - - α α	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C K ⁻¹ x 10 ⁻⁶ K ⁻¹ x 10 ⁻⁶ K ⁻¹ x 10 ⁻⁶	85 - 65 - 0,15 160 -200 180 -/160 120 140 220
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102	Tg c Tf 1,8 Tv λ RTI - - α α	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness	Tg c Tf 1,8 Tv λ RTI - - α α α	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾	Tg c Tf 1,8 Tv λ RTI - - α α	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness	Tg c Tf 1,8 Tv λ RTI - - α α α	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2 11359-1/2 11359-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)}	Tg c Tf 1,8 Tv λ RTI α α α α O/23	11357-1 u. 2 - 75-1/2 306 - - - - 11359-1/2 11359-1/2 11359-1/2 - 9772 u. 9773 4589-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz	Tg c Tf 1,8 Tv λ RTI - - α α α α - - - - - - - - - - - - -	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 11359-1/2 - 9772 u. 9773 4589-1/2	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 100 Hz Dissipation Factor @ 1 MHz	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 - 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250	°C J/(g x K) °C °C W/(m x K) °C °C °C °C K-1 x 10-6	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 1 MHz Dissipation Factor @ 1 MHz Volume Resistivity	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60093	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 K-1 x 10-	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 1 MHz Dissipation Factor @ 1 MHz Volume Resistivity Surface Resistivity	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60093 IEC 60093	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 C-1 Class Klasse/Class Klasse/Class %	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 1 MHz Dissipation Factor @ 1 MHz Volume Resistivity Surface Resistivity Dielectric Strength	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60243-1	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 K-1 x 10-	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14 26
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 1 MHz Dissipation Factor @ 1 MHz Volume Resistivity Surface Resistivity Dielectric Strength Resistance to Tracking	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60093 IEC 60093	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 C-1 Class Klasse/Class Klasse/Class %	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Diesipation Factor @ 100 Hz Dissipation Factor @ 1 MHz Volume Resistivity Surface Resistivity Dielectric Strength Resistance to Tracking MISCELLANEOUS PROPERTIES ^{*)}	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 9772 u. 9773 4589-1/2 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60243-1	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 C-1 Class Klasse/Class Klasse/Class %	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14 26 600
Glastransition Temperature ¹²⁾ Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) ¹³⁾ Vicat-Softening-Temperature (VST-B50) ¹⁴⁾ Thermal Conductivity Relative Temperature Index acc. UL746B Str Continous Service Temperature ¹⁵⁾ Min. Max. short time Max. continously 5.000/20.000 h Coefficient of Linear Thermal Expansion ¹⁶⁾ between 23 and 55 °C between 23 and 150 °C above 150 °C Flamability ¹⁷⁾ acc. to DIN 4102 acc. to UL 94 @ 3 mm thickness Oxygene Index ¹⁸⁾ ELECTRICAL PROPERTIES ^{19)*)} Dielectric Constant @ 100 Hz Dissipation Factor @ 1 MHz Dissipation Factor @ 1 MHz Volume Resistivity Surface Resistivity Dielectric Strength Resistance to Tracking	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 1EC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 6093 IEC 6093 IEC 6093 IEC 60112	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 K-1 x 10-	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14 26
Glastransition Temperature (PDT-A) Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Min. Relative Temperature Index acc. UL746B Str Continous Service Temperature Softening Str Continous Service Temperature Softening S	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 1EC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 6093 IEC 6093 IEC 6093 IEC 60112	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 K-1 x 10-	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14 26 600
Glastransition Temperature (PDT-A) Specific Heat @ 23°C Heat-Deflection-Temperature (HDT-A) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Vicat-Softening-Temperature (VST-B50) Min. Relative Temperature Index acc. UL746B Str Continous Service Temperature Softening Service Ser	Tg	11357-1 u. 2 - 75-1/2 306 11359-1/2 11359-1/2 11359-1/2 11359-1/2 1EC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 60250 IEC 6093 IEC 6093 IEC 6093 IEC 60112	°C J/(g x K) °C °C W/(m x K) °C °C °C °C °C K-1 x 10-6 K-1 x 10-	85 - 65 - 0,15 160 -200 180 -/160 120 140 220 -/- V-0 52 2,5 2,6 0,001 0,015 > 10E13 > 10E14 26 600 A A A

The data contained herein are average values and partly taken from the information of the raw material suppliers. It is quite possible, however, that in some cases the material properties differ significantly from the information given in this document! Reinforced plastics in particular are often anisotropic and consequently show parallel and perpendicular to the flow direction different characteristics. Tests with injection molded specimens which often are used by raw material suppliers may result in clearly distinctive values. *)#)

Comparing the material properties of different companies, one must see to it that the test procedures are similar. Test procedures may considerably differ in respect to conditions, parameters and applied standards which might lead to evident different property values. In general, POLYTRON determines the material properties according to commonly valid ISO standards. XI

Please pay attention to the remarks hereinafter:

Unless otherwise stated the material properties were obtained in standard climate, at room temperature with 23°C and 50 % relative humidity.

- 1) Material designation as well as indication of probable fillers is done with reference to ISO 1043 part I and II.
- 2) Only common colors for semi-finished shapes are indicated here. Other colorations are quite possible if the quantity is sufficient. However, colorants may influence the material properties to some extent considerably!
- 3) As the data for the water/moisture absorption depends on the chosen size of test specimen as well as on test parameters, values are only given for saturation but not on time.
 - <u>Remark</u>: In liquid or gaseous state, water as well as other liquids with their ingredients may penetrate the material structure and influence the molecular system. Hereby the material properties may be changed considerably. In normal cases these processes are reversible. In theory, substances can be eliminated from the material or the material structure material can be influenced (for example by re-crystallization), which would change the properties persistently. In general, goes the water/moisture absorption along with a change of volume. The dimensional change of isotropic plastics can be up to 30% of the moisture absorption. The dimensional change of reinforced plastics depends on the fiber orientation.
- 4) The tension speeds applied are chosen from the standards for the materials to be tested. In general, the tensile strength of engineering plastics is determined at 20 mm/min of fiber reinforced and high performance plastics at 5 mm/min and of the relatively soft materials (for instance PE) at 50 mm/min. The tension e-modulus is always determined at a tension speed of 1 mm/min. Test specimens are described in ISO 3167 standard (in general type 1B with a thickness of 4 mm is used).
 - <u>Remark</u>: A high yield stress or stress at break refer to a solid, strong material. Materials with high strain are tough those with low brittle. The e-modulus in turn supplies information on the rigidity of materials.
- 5) Creep strength limit gives information on creep strength under tensile load, i.e., the given value describes the deformation of the test specimen under load over the time. Practically the initial stress is reflected which after 1,000 hours of load leads to a tension of 1%
- 6) The test speeds are prescribed in ISO 178 and comparable with those of the tension test. Test specimen is of rectangular shape with a size of 4 x 10 x 80 mm.
 - <u>Remark</u>: The correlation between tension and elongation of plastics is in general nonlinear. Therefore, in case of doubt does the flexural modulus result in higher test values than that of the tension test. In case the load exceeds the limit of the e-modulus, one has to count with an irreversible damage of the material structure. Therefore, the value of the obtained flexural test is only of limited
- 7) The compressive stress at strain describes the material performance under compressive load. A strain value is given which includes a 1 % compression of the test specimen. For this a cylindrical test specimen is used of which the ratio of diameter and length is at least 0.4 (for instance: Ø 12 x 30 mm).
- 8) ISO 179 and 180 provide quite a number of test specimens and possible directions of application for force. Apart from the exceptions listed in the ISO, test specimens of type 1 (4 x 10 x 80 mm) are used. Due to the size of test equipment for Izod impact tests also test specimens of type 2 (12.7 x 12.7 x 63.5 mm) are used. Except for laminated plastics, vertical direction of force application is preferred on the small sides of the test specimens. For notched test specimens the groove ground radius is specified in the ISO. The preferred is the radius A with 45°. The size of the chosen pendulum hammer is specified by the ISO. The work input W for breaking the test specimen must be within 10 and 80 % of the pendulum work power E (nominal value). In most cases a pendulum of 5 J nominal efficiency is used for the notch impact strength test.
 - <u>Remark</u>: The details next to the ISO supply information on the chosen test specimens and directions of application for force; 1eU therefore means: test specimen type 1, force applied along the small side, unnotched. Would an N be indicated instead of the U, the test specimen would be notched, with a groove ground radius N = A, B or C.
- 9) The ISO proposes a smooth and even plate of 50 x 50 mm surface with 4 mm thickness for the specimen. The test load for the ball pressure hardness can range from 49, 132, 358 or 961 N, the one for Rockwell hardness is determined to be 980 N.
- 10) The shore hardness test has a particular measuring scale and therefore is recommendable for softer materials, like PE, PTFE or elastomers. The ISO provides two test scales, Shore A and Shore D. In case the values obtained with the durometer type A should exceed 90° then it is recommended to use the durometer type D. Generally, it is recommended to use measuring per ball indentation or Rockwell for harder thermoplastics.
- The tribology properties were tested on a pin on disk tribo system. The test setup follows the instructions of the ISO 7148-2. For this purpose, a pin of \emptyset 6 mm from the material to be tested is pressed with 3 MPa on a rotating C35 steel disk of \emptyset 160 mm, roughness Ra = $0.7 0.9 \mu m$. The disk rotates with a speed of 0.33 m/s over a distance of 28,000 meters. The results from the above described test setup, however, are not universally valid, as other test setups as well are allowed which may result in deviating values. The American test procedure according to ASTM D 3702 for example is already in its test setup extremely different to the pin on disk test and therefore may yield in totally different test results.
 - <u>Remark</u>: The dynamic coefficient of friction indicates the frictional resistance of a moving glide element. Contrary to this does the static coefficient of friction reflect the initial resistance of a glide element to be put in motion. The bigger the difference between

both values, the bigger is the so-called slip-stick, i.e. the blocking up in the very beginning of the start. For applications where the motion is interrupted frequently, and high rotation exactness is required materials have to be chosen with very low slip-stick susceptibility.

- 12) The melting temperature declares the value at which the thermoplastic materials get to their viscous status. A critical point for amorphous plastic materials respectively for the amorphous parts of the semi-crystalline plastics is the glass transition temperature as above this temperature the amorphous parts become thermo-elastic. Of thermosetting plastics respectively plastics with thermosetting characteristics (for instance PTFE, PI, PBI), however a melting temperature cannot be determined. The temperature resistance of these materials is limited only by the thermal oxidative decomposition.
 - <u>Remark</u>: Reaching the glass transition temperature, the semi-crystalline materials can already lose a considerable part of their strength although the real melting temperature, where the crystalline parts reach their plastic condition, is much higher. Helpful for the evaluation the fact of this matter is the heat deflection temperature or the Vicat softening temperature explained hereafter.
- 13) The heat deflection temperature describes the temperature where the test specimen achieves a bowing specified in the standard spec. under a defined load (edge fibre or flexural stress). The ISO 75-2 provides three methods for this load: A with 1.8 MPa, B with 0.45 MPa or C with 8 MPa. In common practice a load of 1.8 MPa (method A) is applied.
- 14) By means of the Vicat procedure the temperature is determined at which a defined entering body under specified load and specified temperature increase gets 1 mm deep into the surface of the test specimens. This standard provides four variants: Procedure A with a load of 10 N and a temperature increase of 50°C/h (A50) or 120°C/h (A120) respectively and procedure B with a load of 50 N and a temperature increase of 50°C/h (B50) or 120°C/h (B120) respectively.
- On determination of the continuous operating temperature, a heavy impact load is provided as plastics often become brittle when exposed to coldness. The minimum continuous operating temperature shows the value at which the material still possesses at least 50 % of its standard impact strength. The maximum continuous operating temperature however describes the temperature at which the material after the indicated operation time still possesses 50 % of its strength. Short-time means in this context that the material is exposed to the temperature for some hours only.
 - <u>Remark</u>: The continuous operating temperature in general depends on the time and height of the mechanical load applied during the induction period of temperature. This means that at lower or without mechanical load the materials can also be used at lower or higher temperatures than those indicated.
- 16) The coefficient of linear thermal expansion indicates the linear extension of a material depending on the changing temperature load per unit. The expansion may be different in parallel and perpendicular direction, particularly for reinforced material.
- 17) The details on flammability and extinction are taken from the data sheets of our raw material suppliers and are neither based on own testing nor on testing of semi-finished shapes. Therefore, they do not represent reliable information on actual material behavior nor on that of a part made hereof in case of fire.
 - <u>Remark</u>: The performance under fire describes the properties of plastics under specified heating/firing rates, depending on the thickness of specimens. The grading is specified in a so-called flammability classification.
 - DIN 4102 distinguishes between non-inflammable (A class) and inflammable (B class) materials, i.e. B1 means hardly inflammable, B2 normal inflammable, B3 easily inflammable. Similar to this is the classification of the American Underwriter Laboratories (UL), following the ISO 9772 and 9773 on a scale from HB which is the worst up to 5V which is the best grade ($HB \Rightarrow V-2 \Rightarrow V-1 \Rightarrow V-0 \Rightarrow 5V$), likewise depending on the thickness of the test specimens as well on the duration/time of heating/firing.
- 18) The oxygen index shows the minimum oxygen concentration in an oxygen-nitrogen-composition/mixture which is needed for burning a material.
- 19) The tests for the electrical properties were made with natural test specimens (without color). The properties of colored, in particular black test specimens may be lower up to 50 % of those of natural materials, as the color particles may have a conducting influence. Micro porosity, voids as well as high moisture content may also have a considerable adverse effect on the insolating properties of plastic materials.
- *) Due to the moisture absorption of polyamide (PA) do the properties vary partly considerably for which reason value sections have to be given for mechanical as well as for electrical properties.
- #) Materials reinforced with fibers as a rule are anisotropic. These materials may show partly considerable property variances in parallel or perpendicular to the flow direction.
- ⁺) Following standards and test specimens were used for determining the data:
- AE Properties were obtained on specimens machined from semi-finished shapes as per valid ASTM Standards.
- AS Properties were obtained on injection molded specimens as per valid ASTM standards.
- DE Properties were obtained on specimens machined from semi-finished shapes as per valid DIN standards.
- DS Properties were obtained on injection molded specimens as per valid DIN standards.
- IE Properties were obtained on specimens machined from semi-finished shapes as per valid ISO standards.
- IS Properties were obtained on injection molded specimens as per valid ISO standards (ISO 294).
- °) All other property dates base on data sheets of raw material suppliers and are not confirmed by own testing nor testing of semifinished shapes. Therefore, they do not give reliable information on actual material performance respectively performance of a fabricated part made of this material under service condition.

The symbols and figures have the following meaning:

- A Application is possible; material is usable.
- B Application is limited; short-term use possible or only under low mechanical load; the material's performance is limited.
- C Application is not possible; material swells severely or decomposes already after a short time.
- + Material is reliable respectively can be used for the indicated application.
- Material is instable respectively unsuitable for the intended application.
- (+) Material is not yet tested.
- OR on Request
- swz. black
- 0,0 The value given with the radiation resistance shows the Radiation Index (RI) which is defined as the logarithm, base 10, of the absorbed radiation dose in Grays at which the mechanical properties (here flexural strength) is reduced to 50% of its initial value.

Properties shown in this table may help to make the right material choice and to compare the different plastic materials. However, these properties are not legally binding! Data must not be used for specifications nor be used as sole basis for designing purpose! The user or buyer is obligated to control the quality and properties of the recommendations on its own always by testing under practical service conditions. Any infringements of patents, copyrights or other rights in the possession or under the administration of third parties by the application, use, processing or other use of their recommendations, information, data or products are at the user's own risk!

All plastic materials offered by POLYTRON are unsuitable for the use in respectively with medical or dental implantations!

We believe that all recommendations, information, and data given by or in the name of POLYTRON Kunststofftechnik are reliable and the best currently available on the subject. For application, use, processing or other use of the products and recommendations, information as well as consequences arising from this, POLYTRON Kunststofftechnik does not assume any liability.

The user or buyer is obligated to prove the quality and properties of the recommendations, information and data on its own. He is fully reliable for the application, use and processing or other use of the products as well as the results arising from this. POLYTRON Kunststofftechnik does not undertake any reliability in regard to any infringements of patents, copyrights or other rights in the possession or under the administration of third parties by the application, use, processing or other use of their recommendations, information, data or products.

Arnite®, Arnitel® and Stanyl® are registered trademarks of DSM N.V.

Celazole® is a registered trademark PBI Performance Products, Inc.

Fortron®, GUR® and Hostaform® are registered trademarks of Ticona GmbH.

Extem®, Lexan® and Ultem® are registered trademarks of SABIC Innovative Plastics IP BV

Ferrotron®, Fluxtrol® and Alphaform® are registered trademarks of Fluxtrol Inc.

Oxpekk® is a registered trademark of Oxford Performance Materials, Inc.

Axpet®, Makrolon®, Vivak® and Vulkollan® are registered trademarks of Covestro AG.

Delrin®, Teflon®, Vespel® and Zytel® are registered trademarks of DuPont.

Victrex® is a registered trademark and PEEK™ is a trademark of Victrex, plc.

Meldin® and Rulon® are registered trademarks of Saint Gobain Performance Plastics Corp.

AvaSpire®, KetaSpire®, Mindel®, PrimoSpire®, Radel® and Torlon® are registered trademarks of SOLVAY Advanced Polymers, L.L.C.

Zellamid® is a registered trademark of Zell-Metall Ges.m.b.H.

Acetron®, Duraspin®, Fluorosint®, Ketron®, Nylasint®, Nylasteel®, Nylatron®, Semitron®, Techtron®, Tivar® and UltraWear® are registered trademarks of Mitsubishi Chemical Advanced Materials AG.

Glidetech, Teratron, Peratrin, Polytron Kunststofftechnik and XtendedWear are trademarks of POLYTRON Kunststofftechnik GmbH & Co. KG.